НАО «УНИВЕРСИТЕТ ИМЕНИ ШАКАРИМА ГОРОДА СЕМЕЙ»

«РОЛЬ И ПРИМЕНЕНИЕ СЕНСОРОВ В ШКОЛЬНОМ КУРСЕ РОБОТОТЕХНИКИ» УЧЕБНАЯ ПРОГРАММА КУРСОВ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ ПЕДАГОГОВ

СОДЕРЖАНИЕ

- 1) Общие положения;
- 2) Глоссарий;
- 3) Тематика Программы;
- 4) Цель, задачи и ожидаемые результаты Программы;
- 5) Структура и содержание Программы;
- 6) Организация учебного процесса;
- 7) Учебно-методическое обеспечение Программы;
- 8) Оценивание результатов обучения;
- 9) Посткурсовое сопровождение;
- 10) Список основной и дополнительной литературы.

1) Общие положения

Образовательная программа курсов повышения квалификации учителей «Роль и использование сенсоров в курсе школьной робототехники» (далее – Программа) предназначена для преподавателей общеобразовательных школ, лицеев, гимназий, колледжей.

Курс направлен на изучение основных принципов работы и применения датчиков в робототехнических системах. Студенты узнают о различных типах датчиков, их функциях и применении в проектировании и программировании робототехники. Курс включает в себя изучение того, как подключать, программировать и интегрировать датчики в проекты робототехники, а также практические занятия и лабораторные занятия для закрепления обучения. Цель предмета — подготовить студентов к работе с современными технологиями в области робототехники и развить практические навыки в области проектирования и программирования робототехнических устройств.

2) Глоссарий

Ультразвуковой датчик расстояния – это сенсор, который использует ультразвуковые волны для измерения расстояния до объектов.

Инфракрасный датчик расстояния — сенсор, который использует инфракрасные лучи для определения расстояния до объектов.

RGB-сенсор — сенсор, способный распознавать различные цвета по их составляющим - красному (Red), зелёному (Green) и синему (Blue).

Сенсор соприкосновения — датчик, который реагирует на физический контакт с объектом.

Гироскоп — сенсор, используемый для измерения угловой скорости и ориентации робота в пространстве.

Акселерометр – сенсор, измеряющий ускорение робота в пространстве.

Микрофон — устройство для записи звуковых сигналов, используется для восприятия звуков роботом.

Датчик цвета — сенсор, который обнаруживает и распознает цвета объектов.

Инфракрасный приемник — устройство, способное воспринимать инфракрасные сигналы, например, для приёма команд от пульта дистанционного управления.

Датчик света — сенсор, который измеряет уровень освещённости в окружающей среде.

Датчик звука — сенсор, который обнаруживает и измеряет звуковые волны в окружающей среде.

Инфракрасный передатчик — устройство, которое испускает инфракрасные сигналы для коммуникации с другими устройствами, например, для беспроводного управления роботом.

Датчик температуры – сенсор, который измеряет температуру окружающей среды или поверхности.

Датчик влажности — устройство, используемое для измерения влажности воздуха или почвы.

Датчик приближения — сенсор, который определяет наличие объектов в непосредственной близости к роботу без физического контакта.

Компас — сенсор, используемый для определения направления или ориентации робота относительно магнитного севера.

Датчик движения — устройство, которое реагирует на движение объектов в его поле обнаружения.

Датчик газа — сенсор, используемый для обнаружения различных газов в окружающей среде.

Датчик давления — Устройство, измеряющее давление воздуха или жидкости.

Барометр — сенсор, который измеряет атмосферное давление и может использоваться для прогнозирования погоды или определения высоты.

3) Тематика Программы

- 1. Основные типы сенсоров в робототехнике: классификация и принципы работы.
 - 2. Применение ультразвуковых датчиков расстояния в робототехнике.
- 3. Роль инфракрасных датчиков расстояния и их использование в робототехнических системах.
- 4. Изучение RGB-сенсоров и их применение для распознавания цветов в робототехнике.
- 5. Функциональное назначение датчиков соприкосновения и способы их применения в робототехнических задачах.
- 6. Гироскопы и акселерометры: роль в оценке ориентации и движении робота.
- 7. Использование микрофонов и датчиков звука для реакции робота на акустические сигналы.
- 8. Датчики цвета и их роль в распознавании и классификации объектов роботом.
- 9. Изучение инфракрасных приемников и передатчиков для беспроводного управления робототехническими устройствами.
- 10. Роль датчиков движения в обнаружении и отслеживании движущихся объектов.
- 11. Датчики температуры и влажности: применение в робототехнике для мониторинга окружающей среды.
- 12. Компасы и их использование для навигации и определения направления движения робота.
- 13. Использование датчиков газа и барометров для мониторинга параметров окружающей среды роботом.

14. Интеграция нескольких типов сенсоров для создания комплексных робототехнических систем и алгоритмов управления.

4) Цель, задачи и ожидаемые результаты Программы

Цель: ознакомление учащихся с основными принципами функционирования и применения сенсоров в создании и программировании роботов, а также развитие практических навыков в области проектирования и управления роботизированными системами.

Задачи:

- 1. Изучение основных типов сенсоров и их принципов работы в робототехнике.
- 2. Анализ применения различных сенсоров в реальных робототехнических системах и исследование их функциональных возможностей.
- 3. Практическое освоение методов подключения и программирования сенсоров для реализации конкретных задач управления и взаимодействия робота с окружающей средой.
- 4. Исследование методов интеграции нескольких сенсоров для повышения эффективности и адаптивности робототехнических систем.
- 5. Разработка и реализация собственных проектов, включающих использование сенсоров для выполнения специфических задач, с последующим анализом и оптимизацией функциональности созданных роботов.

Ожидаемые результаты:

- 1. Понимание основных принципов работы различных типов сенсоров и их роли в функционировании робототехнических систем.
- 2. Умение выбирать подходящие сенсоры для конкретных задач робототехники и обосновывать выбор на основе требований к функциональности и условий работы.
- 3. Навыки подключения и программирования сенсоров в различных средах разработки робототехнического ПО для обеспечения взаимодействия робота с окружающей средой.
- 4. Способность адаптировать и модифицировать существующие робототехнические системы, внедряя новые сенсоры и улучшая их функциональность.
- 5. Создание собственных проектов робототехники с использованием сенсоров для решения разнообразных задач, что демонстрирует уровень понимания и навыков в области применения сенсоров в робототехнике.

5) Структура и содержание Программы

Учебно-тематический план

No	Наименование	Часы	T	П	Л	Краткое описание
1	Основные типы сенсоров в робототехнике: классификация и принципы работы	4	2		2	Эта тема рассматривает различные типы сенсоров, такие как датчики расстояния, цвета, звука и другие, а также основные принципы их работы в контексте робототехники.
2	Применение ультразвуковых датчиков расстояния в робототехнике	4	2			Здесь исследуется использование ультразвуковых датчиков для измерения расстояния до объектов, их принцип работы и примеры задач, которые они помогают решать, такие как избегание препятствий и навигация.
3	Роль инфракрасных датчиков расстояния и их использование в робототехнических системах	4	2			Эта тема обсуждает принцип работы инфракрасных датчиков, их преимущества и ограничения, а также области применения в робототехнике, включая навигацию в помещениях и обнаружение объектов
4	Изучение RGB-сенсоров и их применение для распознавания цветов в робототехнике	6	4			Здесь рассматривается использование RGB-сенсоров для распознавания и классификации цветовых объектов, а также методы программирования роботов для работы с такими сенсорами
5	Функциональное назначение датчиков соприкосновения и способы их применения в робототехнических задачах	6	2		4	Эта тема охватывает принцип работы датчиков соприкосновения и их роль в обнаружении препятствий, определении границ рабочей области робота и реализации безопасного взаимодействия с окружающей средой.
6	Гироскопы и акселерометры: роль в оценке ориентации и	6	2		4	Здесь исследуется использование гироскопов и акселерометров для определения ориентации,

	_					
	движении робота					ускорения и скорости робота, а
						также их применение в
						стабилизации движения и
						навигации
7	Использование	6	2		4	Эта тема описывает работу
	микрофонов и датчиков					микрофонов и датчиков звука, их
	звука для реакции					применение в обнаружении
	робота на акустические					звуковых сигналов и реакции
	гот налы сигналы					робота на звуковые команды или
						события
8	Датчики цвета и их роль	6	2		4	Здесь рассматривается
	в распознавании и	O			•	использование датчиков цвета
	классификации					для идентификации различных
	объектов роботом					цветов и объектов, а также
	объектов роботом					
						методы программирования
						роботов для работы с этими
						сенсорами и принятия решений
			_		4	на основе цветовой информации
	Изучение инфракрасных	6	2		4	Эта тема описывает принцип
	приемников и			9		работы инфракрасных
	передатчиков для					приемников и передатчиков, их
	беспроводного					применение в системах
	управления)		беспроводного управления и
	робототехническими					обмена данными между роботами
	устройствами					и внешними устройствами.
	Роль датчиков движения	6	4		2	Здесь рассматривается
	в обнаружении и					использование датчиков
	отслеживании					движения для обнаружения
	движущихся объектов					движущихся объектов,
						отслеживания их траектории и
						реакции робота на движение в
						окружающей среде
11	Датчики температуры и	6	2		4	Эта тема охватывает
	влажности: применение		_			использование датчиков
	в робототехнике для					температуры и влажности для
400	мониторинга					измерения и контроля параметров
	мониторинга окружающей среды					окружающей среды в
	окружающой ороды					робототехнических приложениях,
1						F - I
						таких как метеостанции, умные
10	V 0 1 477 0 2 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1	2		2	дома и агротехнологии
	Компасы и их	4	2			Здесь рассматривается работа
	использование для					компасов, их применение для
	навигации и					определения направления
	определения					движения робота и навигации в
	направления движения					пространстве, включая

	робота					использование в автономных
						навигационных системах
13	Использование	4	2		2	Эта тема описывает принципы
	датчиков газа и					работы датчиков газа и
	барометров для					барометров, их применение для
	мониторинга					обнаружения и измерения
	параметров					концентрации газов и
	окружающей среды					атмосферного давления в
	роботом					окружающей среде, а также их
						роль в робототехнических
						системах для контроля
						окружающей среды и
						обеспечения безопасности
14	Интеграция нескольких	4	2		2	Эта тема описывает методы
	типов сенсоров для					интеграции различных типов
	создания комплексных					сенсоров в робототехнических
	робототехнических					системах для создания
	систем и алгоритмов				-	комплексных решений,
	управления					способных адаптироваться к
				-		разнообразным условиям
						окружающей среды и эффективно
				1		выполнять задачи в реальном
						времени
	итого:	72				

 $\overline{T-}$ теория, Π –практика, $\overline{J-}$ лабораторная работа.

Примечание: 1академический час – 45минут.

6) Организация учебного процесса

Курсы повышения квалификации организуются в следующем режиме:

- 1. традиционное обучение;
- 2. обучение с использованием дистанционных технологий обучения.

Обучение организовано согласно учебной программе курса. Продолжительность курса — 72 часа.

Процесс обучения основан на интерактивном сотрудничестве преподавателя и учащихся, что способствует оптимальному раскрытию каждого человека, участвующего в процессе обучения. Для них характерен высокий уровень интенсивности общения участников педагогического взаимодействия, смена и разнообразие видов и форм деятельности, раскрытие творческого потенциала слушателей, их нравственное и духовное развитие.

При организации учебного процесса используются следующие формы и методы обучения: лекция-диалог, практические занятия, индивидуальная работа студентов, консультации, онлайн-консультация и индивидуальная работа студента с преподавателем, работа в малых группах.

7) Учебно-методическое обеспечение Программы

- нормативно-правовые документы;
- учебно-методические пособия;
- лабораторные и практические занятия;
- платформы и видеоуроки по STEAM.

8) Оценивание результатов обучения

После прохождения курса студенты сдают тест по теоретическим материалам курса.

Для определения глубины полученных в рамках программы знаний будет создан проект с использованием датчиков и анализом полученных результатов. Проект имеет следующие критерии оценки:

- 1. Качество реализации проекта: оценка того, насколько качественно выполняются задачи в рамках проекта, включая правильную интеграцию датчиков, разработку алгоритма и программного обеспечения, а также интеграцию датчиков в роботизированную систему.
- 2. Техническая сложность проекта: оценка уровня технической сложности и инновационности проекта, включая использование различных типов датчиков, их интеграцию и взаимодействие с другими компонентами робототехнической системы.
- 3. Функциональность и эффективность: оценить функциональность и эффективность разрабатываемого роботизированного устройства или системы, включая возможность выполнения задач с помощью датчиков.
- 4. Креативность и инновационность: оценка оригинальности и креативности идеи проекта, а также уровня инновационности в использовании датчиков и разработке алгоритмов и программного обеспечения.
- 5. Качество презентации и документации: оцените качество презентации проекта, включая ясность изложения и использование наглядных материалов, а также отчетов, блок-схем, электрических схем и т. д. включая качество документации.

9) Посткурсовое сопровождение

Послекурсовое сопровождение осуществляется во взаимодействии преподавателей (тренеров) организации, реализующей программу обучения, совместно с преподавателями, прошедшими курсы повышения квалификации по программе повышения квалификации. Это взаимодействие осуществляется с помощью различных средств связи (электронная почта, платформы видеоконференций, интернет-платформы, мессенджеры и т. д.).

Формы послекурсового контроля для преподавателей, прошедших курс повышения квалификации:

- 1. Методическое сопровождение
- 2. Проведение совместных мероприятий
- 3. Привлекать к участию в организационных мероприятиях преподавателей, успешно использующих полученные в рамках программы знания; публикации материалов из своего опыта.

No	Деятельность учителя	Деятельность	Результат
		преподавателя (тренера).	
1.	Планирование уроков курса	Консультация	План урока
	Проведение консультаций, семинаров, круглых столов по преподаванию методики курса.	Консультация	Программа мероприятия

10) Список основной и дополнительной литературы

Основная

- 1. Мырзабекова, Р. С. Әлем өркениеттерінің тарихы: оқу құралы. Алматы: Қазақ университеті, 2017. 188 б.
- 2. Гарявин А. Н., Емельянова Т. В., Жиленко С. А.. История мировых цивилизаций. М.:Директ-Медиа. 2022. 304 с.
- 3. История мировых цивилизаций :учебное пособие / Г. В. Драч, Н. Н. Ефремов, М. В. Заковоротная и др. 2-е изд., стер. ; ред. Г. В. Драч, Т. С. Паниотова. М. : КНОРУС, 2019.-464 с. ISBN 978-5-406-02640-3
- 4. Кармин А. С. Культурология / А. С. Кармин, Е. С. Новикова. СПб: Питер, 2019.-412 с.
- 5. Силичев Д. А. Культурология [Электронный ресурс] : учебное пособие / Д. А. Силичев. 5-е изд., перераб. и доп. М. : НИЦ ИНФРА-М, 2019. 393 с. Режим доступа: http://znanium.com Фортунатов В. В. История мировых цивилизаций / В. В. Фортунатов. Санкт Петербург: Питер, 2018. 528 с.

Дополнительная

- 1. Сенсоры и датчики физических величин [Текст] : методические рекомен- дации для проведения лабораторных работ по дисциплине «Сенсоры и датчики фи- зических величин»/ Юго-Зап. гос. ун-т.; сост.: В.А. Пиккиев, Е.М. Терещенко, Курск, 2018. 34с.: ил.9, прилож.-. Библиогр 2.:с. 34.
- 2. Сенсоры и датчики физических величин: методические рекомендации для проведения практических работ по дисциплине «Сенсоры и датчики физических ве- личин»/ Юго-Зап. гос. ун-т.; сост.: Е.М. Терещенко, Курск, 2018. 34с.: ил.9, при- лож.-1. Библиогр 2.:с. 34.

- 3. Сенсоры и датчики физических величин: методические указания по выполнению самостоятельной работы /Юго-Зап. гос. ун-т; сост.: Е.М. Терещенко. Курск, 2018. 11с.: ил.-, прилож.- . Библиогр.6: с. 11.
- 4. Шерстобитова А.С. Датчики физических величин. СПб: Университет ИТМО, 2017.-57 с.
- 5. Curtis D. Johnson, Process Control Instrumentation Technology 8th Ed 2014

Интернет ресурсы

- 1. https://univision.kz/edu-program/19898.html
- 2. https://www.bsuir.by/m/12_100229_1_93999.pdf
- $3. \ \ \, \underline{https://portal.tpu.ru/SHARED/a/ARISTOV/Learning/Izmerit_preobr/Tab3/} \\ \underline{zak\%20162_12.pdf}.$